The Effect of Ethylene and Propylene Pulses on Respiration, Ripening Advancement, Ethylene-Forming Enzyme, and 1-Aminocyclopropane-1-carboxylic Acid Synthase Activity in Avocado Fruit.
نویسندگان
چکیده
When early-season avocado fruit (Persea americana Mill. cv Hass) were treated with ethylene or propylene for 24 hours immediately on picking, the time to the onset of the respiratory climacteric, i.e. the lag period, remained unchanged compared with that in untreated fruit. When fruit were pulsed 24 hours after picking, on the other hand, the lag period was shortened. In both cases, however, a 24 hour ethylene or propylene pulse induced a transient increase in respiration, called the pulse-peak, unaccompanied by ethylene production (IL Eaks [1980] Am Soc Hortic Sci 105: 744-747). The pulse also caused a sharp rise in ethylene-forming enzyme activity in both cases, without any increase in the low level of 1-aminocyclopropane-1-carboxylic acid synthase activity. Thus, the shortening of the lag period by an ethylene pulse is not due to an effect of ethylene on either of the two key enzymes in ethylene biosynthesis. A comparison of two-dimensional polyacrylamide gel electrophoresis polypeptide profiles of in vitro translation products of poly(A(+)) mRNA from control and ethylene-pulsed fruit showed both up- and down-regulation in response to ethylene pulsing of a number of genes expressed during the ripening syndrome. It is proposed that the pulse-peak or its underlying events reflect an intrinsic element in the ripening process that in late-season or continuously ethylene-treated fruit may be subsumed in the overall climacteric response. A computerized system that allows continuous readout of multiple samples has established that the continued presentation of exogeneous ethylene or propylene to preclimacteric fruit elicits a dual respiration response comprising the merged pulse-peak and climacteric peak in series. The sequential removal of cores from a single fruit has proven an unsatisfactory sampling procedure inasmuch as coring induces wound ethylene, evokes a positive respiration response, and advances ripening.
منابع مشابه
Cyanide metabolism in relation to ethylene production in plant tissues.
HCN is the putative product of C-1 and amino moieties of 1-aminocyclopropane-1-carboxylic acid (ACC) during its conversion to ethylene. In apple (Malus sylvestrus Mill.) slices or auxin-treated mungbean (Vigna radiata L.) hypocotyls, which produced ethylene at high rates, the steady state concentration of HCN was found to be no higher than 0.2 micromolar, which was too low to inhibit respiratio...
متن کاملEthylene and Wound-Induced Gene Expression in the Preclimacteric Phase of Ripening Avocado Fruit and Mesocarp Discs.
Whereas intact postharvest avocado (Persea americana Mill.) fruit may take 1 or more weeks to ripen, ripening is hastened by pulsing fruit for 24 h with ethylene or propylene and is initiated promptly by cutting slices, or discs, of mesocarp tissue. Because the preclimacteric lag period constitutes the extended and variable component of the ripening syndrome, we postulated that selective gene e...
متن کاملStructure, catalytic activity and evolutionary relationships of 1-aminocyclopropane-1-carboxylate synthase, the key enzyme of ethylene synthesis in higher plants.
Both ethylene and the enzymes of ethylene synthesis are subjects of intensive scientific investigation. The present review discusses structure, catalytic activity and evolutionary relationships of 1-aminocyclopropane-1-carboxylate synthase, identified for the first time in ripening tomato in 1979. This enzyme is responsible for the conversion of S-adenosyl-L-methionine to 1-aminocyclopropane-1-...
متن کاملEthylene-Enhanced 1-Aminocyclopropane-1-carboxylic Acid Synthase Activity in Ripening Apples.
Apples (Malus sylvestris Mill, cv Golden Delicious) were treated before harvest with aminoethoxyvinylglycine (AVG). AVG is presumed to reversibly inhibit 1-aminocyclopropane-1-carboxylic acid (ACC) activity, but not the formation of ACC synthase. AVG treatment effectively blocked initiation of autocatalytic ethylene production and ripening of harvested apples. Exogenous ethylene induced extract...
متن کاملEthylene production by growing and senescing pear fruit cell suspensions in response to gibberellin.
A pear (Pyrus communis L. cv Passe Crassane) cell suspension was used as a model system to study the influence of gibberellin on processes related to fruit ripening. Growth of the cell cultures was inhibited and their loss of viability was accelerated when 0.5 millimolar gibberllic acid (GA(3)) was added to suspensions at two stages of cell development, namely, growth and quiescence. Cell respi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 95 3 شماره
صفحات -
تاریخ انتشار 1991